A Computational Approach to Soft-Tissue Fluid-Structure Interaction

نویسندگان

  • Michalis A. Xenos
  • MahadevaBharath R. Somayaji
  • Brian J. Sweetman
  • Andreas A. Linninger
چکیده

Motivation Cerebral disorders affect millions of people around the world. Despite progress in science and medicine, accurate diagnosis and treatment of brain related diseases is hampered due to the lack of proper understanding of the pathophysiology of such disorders. The fluid-soft tissue interaction problem is fundamental in addressing open challenges crucial for the understanding of intracranial dynamics. The challenge includes quantifying mechanical interactions of the expanding cerebral vasculature and the soft tissues of the brain. In this study, we present the mathematical framework to solve the governing system of equations of the fluid-structure interaction (FSI) problem using numerical techniques [1]. Methodology The fluid and solid transport equations of mass and momentum are transformed into a moving, body-fitted coordinate system using generalized curvilinear coordinates [2]. We extend the mapping relationships by computing the motion of conformal reference coordinate system relative to a fixed observer. The model incorporates EulerianLagrangian method to consistently track sharp deformable interfaces between the fluid and solid. The equations describing fluid-structure interaction are coupled and consist of a nonlinear system of partial differential equations (PDEs). The governing PDEs are discretized using the finite volume method in both structured and unstructured meshes [3]. Simultaneous solution approach using inexact Newton method for the non-linear system and a Krylov subspace based method for the linear subsystem (GMRES method) was used instead of fixed-point iteration methods like SIMPLE algorithm [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow

Many diseases are related to cerebrospinal .uid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF .ow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing gen...

متن کامل

Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods

Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...

متن کامل

A critical review on structure-soil-structure interaction

The purpose of this paper is to review computational methods in structure-soil-structure interaction. As a result of globalization, buildings are located close to each other. This issue happens especially in big cities, making the study of structure-soil-structure interaction as an essential part of structural design process. The effect of soil medium, on which the building structure stands, es...

متن کامل

Fluid-structure interaction studies on marine propeller

Composite propellers offer high damping characteristics and corrosion resistance when compared with metal propellers. But the design of a hybrid composite propeller with the same strength of metal propeller is the critical task. For this purpose, the present paper focusses on fluid-structure interaction analysis of hybrid composite propeller with Carbon/Epoxy, R-Glass/Epoxy and S2-Glass/Epoxy t...

متن کامل

A finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow

The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006